Репрезентативность выборочной совокупности

Репрезентативность выборочной совокупности

В формировании выборочной совокупности важную роль играет определение ее объема и обеспечение репрезентативности.

«Если тип выборки говорит о том, как попадают люди в выборочную совокупность, то объём выборки сообщает о том, какое их количество попало сюда». То есть объем выборки — это количество единиц попавших в выборочную совокупность. И очень важно, чтобы выборка была репрезентативной, то есть не искажала представлений о генеральной совокупности в целом. «Требования репрезентативности выборки означают, что по выделенным параметрам (критериям) состав обследуемых должен приближаться к соответствующим пропорциям в генеральной совокупности».

Одна из ключевых проблем, встающих, как правило, перед социологом, решающим: доверять полученным в ходе него данным или нет, это то, сколько же человек должно быть опрошено для того, чтобы получить действительно репрезентативную информацию. К сожалению, единой и четкой формулы, используя которую можно было бы рассчитать оптимальный объем выборочной совокупности, не существует в природе. И объясняется это весьма просто. Дело в том, что определение объема выборочной совокупности — это проблема не столько статистическая, сколько содержательная.

Иными словами, объем выборочной совокупности зависит от множества факторов, основные из них следующие:

1. затраты на сбор информации, включая временные;

2. стремление к определённой статистической достоверности результатов, которую надеется получить исследователь;

3. ценность и новизна информации, получаемой в результате опроса.

Объем выборки обусловлен степенью однородности или неоднородности, генеральной совокупности, количеством характеризующих ее признаков. Однородной считается совокупность, в которой контролируемый признак, например уровень грамотности, распределён равномерно, то есть не образует пустот и сгущений, тогда опросив лишь несколько человек, можно сделать вывод о том, что большинство людей грамотны. Чем более однородна генеральная совокупность, тем меньше объем выборки. Например, «допустим, мы осуществляем отбор из генеральной совокупности в 2000 человек, контролируя состав выборочной совокупности по признаку «пол»»: 70% мужчин и 30% женщин. Согласно теории вероятности, можно предположить, что примерно среди каждых десяти отбираемых респондентов встретятся три женщины. Если мы хотим опросить по крайней мерее 90 женщин, то исходя из вышеупомянутого соотношения, нам необходимо отобрать не менее 300 человек. А теперь предположим, что в генеральной совокупности 90% мужчин и 10% женщин. В этом случае, чтобы в выборочную совокупность попало 90 женщин, необходимо отобрать уже не менее 900 человек». Из примера видно, что объем выборки зависит от разброса признака (дисперсии), и его нужно вычислять по признаку, дисперсия значений которого наибольшая.

«Степень однородности социального объекта зависит, в сущности, от того, насколько детально мы намерены его исследовать. Практически любой, самый «элементарный» объект оказывается чрезвычайно сложным. Лишь в анализе мы представляем его, как относительно простой, выделяя те или иные его свойства. Чем более основательным и детальным будет анализ, чем больше свойств данного объекта мы намерены принять во внимание в их сочетании, а не изолированно, тем больше должен быть объем выборки».

Существуют, так называемые «правила левой руки» для определения размера выборки (таблица 1)»:

Размер выборки растёт Размер выборки уменьшается
— при необходимости опубликовать данные для отдельных подгрупп (размеры подвыборок при этом суммируются, и выборка в целом растёт пропорционально числу подгрупп); — при исследовании организаций, институтов и прочих «первичных единиц отбора», если сравнительно невелика величина генеральной совокупности, из которой производится отбор(например, совокупности сотрудников рекламных агентств, школьников, пациентов и т.п.);
— при проведении общенациональных обследований, когда велика генеральная совокупность; — при проведении локальных и региональных исследований;
— если уже имеющаяся информация по ключевым вопросам (например, о намерениях избирателей голосовать за ту или иную партию) явно недостаточна и степень неопределённости значительна. Ошибки выборки — если уже существующая информация относительно полна и всё ещё остающаяся степень неопределенности незначительна.

В репрезентативной выборке все элементы генеральной совокупности представлены в той же пропорции. Но как бы тщательно не соблюдать этот принцип, случайные ошибки все же будут. Мы имеем возможность определять ошибку репрезентативности. Ошибкой репрезентативности, как правило, называют «расхождение между двумя совокупностями — генеральной, на которую направлен теоретический интерес социолога и представление о свойствах которой он хочет получить в конечном итоге, и выборочной, на которую направлен практический интерес социолога, которая выступает одновременно как объект обследования и средство получить информацию о генеральной совокупности». Важно учитывать, что при помощи выборочного метода никогда нельзя получить абсолютно точную оценку наблюдаемого признака, всегда существует вероятность ошибки, но, если вероятность ошибки мала, то она скорее всего не произойдет. В отечественной литературе наряду с термином «ошибка репрезентативности» встречается и другой — «ошибка выборки». Обычно они используются как синонимы, но понятие «ошибка выборки» количественно более точное, чем «ошибка репрезентативности». Ошибка выборки — это «отклонение средних характеристик выборочной совокупности от средних характеристик генеральной совокупности. На практике она определяется путём сравнения известных характеристик генеральной совокупности с выборочными средними».

Репрезентативность выборки определяется двумя компонентами: систематическими и случайными ошибками. Случайные ошибки связаны «со статистическими погрешностями (зависят от динамики исследуемых признаков) и непредвиденными нарушениями процедуры сбора информации (процедурные ошибки, допущенные при регистрации признаков)». Случайные ошибки уменьшаются с увеличением объема выборочной совокупности. Случайную ошибку можно измерить методами математической статистики, если при формировании выборочной совокупности соблюдался принцип случайности, обеспечивающийся строго определенными правилами, которые составляют метод формирования выборочной совокупности, и устранить.

На практике принцип случайности соблюсти очень сложно, а иногда просто невозможно, что приводит к появлению систематической ошибки, которые возникают «из-за неполной объективности выборки генеральной совокупности (недостаток информации о генеральной совокупности, отбор наиболее «удобных» для исследования элементов генеральной совокупности), а так же из-за несоответствия выборки целям и задачам исследования». Иногда такие ошибки называют ошибками смещения. Они возникают при различных телевизионных опросах, когда телеведущий предлагает телезрителям позвонить по определённым номерам телефонов, послать смс-сообщение и высказать своё мнение по какой-то проблеме. Естественно мы не можем утверждать что эти люди отражают мнение всего населения страны, и даже телеаудитории. Вероятнее всего в таких опросах участвуют более образованные и активные люди, чем вся генеральная совокупность, поэтому любой телевизионный опрос содержит в себе систематическое искажение и носит поверхностный характер.

Но систематические ошибки возникают и в ходе корректно организованного опроса. Например, на улице на вопросы интервьюера отвечают только те, кто никуда не спешит. Искажения можно избежать, если соблюдать принципы случайного отбора и опрашивать, к примеру, каждого десятого прохожего.

Причины возникновения систематических ошибок:

1. «в ходе исследования была не правильно составлена основа выборки (использовались устаревшие, неполные данные либо отсутствовала статистика по некоторым важным для формирования выборки признакам),

2. неудачно выбран способ отбора единиц наблюдения,

3. часть респондентов по разным причинам «выпала» из опроса (отсутствовала, отказалась отвечать) и так далее».

При помощи математических средств такие ошибки устранить невозможно, поэтому необходимо осуществить логический анализ причин появления систематических ошибок и разработать меры, которые смогли бы их устранить. «Величину ошибок смещения определить при помощи математических формул практически не возможно, поэтому они автоматически переходят на результаты и выводы исследования. Ошибки смещения бывают обычно следствием:

— неверных исходных статистических данных о параметрах контрольных признаков генеральной совокупности;

— слишком малого (статистически не значимого) объёма выборочной совокупности;

— неверного применения способа отбора единиц анализа (например, отбор из неверно составленного списка, неудачный выбор места и времени проведения опроса)».

Существуют определённые пределы ошибки выборки, которые зависят от цели исследования. В экономических и демографических прогнозах, например при переписи населения, требуется повышенная надёжность и точность. Для таких прогнозов существенные ошибки оборачиваются миллионными потерями материальных ресурсов и просчетами в прогнозах и планировании. Но чаще поводятся социологические исследования для уяснения общих тенденций, общей ориентировки в социальной сфере не требующие стопроцентной надёжности. Существует приблизительная оценка на надёжность результатов исследования: «повышенная надёжность допускает ошибку выборки до 3%. Обыкновенная — до 3-10%, приближенная — то 10 до 20%, ориентировочная — от 20 до 40%, а прикидочная — более 40%».

Читайте также:  Оценка фин результатов это

Таким образом, существует несколько способов, чтобы избежать ошибки:

— каждый элемент генеральной совокупности должен иметь одинаковую вероятность попасть в выборочную совокупность;

-генеральная совокупность должна быть желательно однородной;

— необходимо иметь сведения о структуре генеральной совокупности и её характерные черты;

-при составлении выборочной совокупности заранее учесть случайные и систематические ошибки.

Источник

Репрезентативность выборки

Чтобы посредством опроса получить максимально точные данные о какой-либо группе людей, например, о ее поведении и предпочтениях, было бы логично опросить эту группу целиком. Но что, если интересующая нас группа очень велика? Опрос всех потребителей молока в России или всех жителей Южного административного округа Москвы займет много времени и обойдется в астрономическую сумму денег. А нужно ли опрашивать их всех?
О размере выборки и статистической ошибке измерений подробно написано в статье «Выборка. Размер – не главное. Или главное» . В этой статье будет рассмотрено второе требование к выборке, также обеспечивающее качество исследования – репрезентативность.

Согласно теории выборочного метода, неоднократно подтвержденной практикой, опрашивать всех нет необходимости, а можно опросить лишь часть группы, которая может быть в тысячи раз меньше. Эта маленькая часть называется выборкой (или выборочной совокупностью), а большая группа, которую она представляет, называется генеральной совокупностью.

При этом если выборка сформирована правильно, выводы, полученные на основе изучения выборки, могут быть перенесены и на генеральную совокупность. Например, если в выборке женщины значимо чаще, чем мужчины, пользуются дезодорантами, то делается вывод, что и в генеральной совокупности (например, в исследованном городе) присутствует такая закономерность. Процесс переноса выводов с выборки на генеральную совокупность называется генерализацией. А свойство выборки отражать характеристики генеральной совокупности называется репрезентативностью. Для более комфортного запоминания термина на рис.1. приведены иллюстрации, когда выборка отражает свойства генеральной совокупности и когда свойства выборки отличаются от свойств генеральной совокупности.

Иллюстративный пример 1

Иллюстративный пример 2

Иллюстративный пример 3

Рис.1. Иллюстративные примеры соответствия (несоответствия) свойств генеральной совокупности и выборки

Не стоит путать понятие репрезентативности с такими понятиями как валидность и релевантность, хотя они тоже относятся к характеристикам качества исследования. В социальных науках валидность понимается довольно широко, но чаще всего – как обоснованность. Понятие валидности относится не к выборке, а к исследовательской методике. Методика или измерение (анкета, блок вопросов, тест) считается валидным, если фиксирует именно то понятие или свойство, которое планируется измерить. Например, если мы захотим оценить уровень лояльности клиента к магазину и выберем для этого лишь показатель частоты посещения магазина, валидность этого подхода будет неполной: возможно, респондент часто заходит в магазин только из-за банкомата, который там установлен. Валидная методика в данном примере должна включать и другие показатели: предпочтение магазина, суммы покупок в этом и других магазинах, готовность переключиться на другие магазины, готовность рекомендовать магазин и др.

При установлении валидности решающую роль играет обоснование и последующая проверка гипотезы релевантности, то есть соответствия измеряемых параметров характеристикам исследуемого объекта. Житейский пример нерелевантности – измерять уровень счастья человека количеством денег у него (хотя, наверное, не все с этим согласятся). Очевидный пример нерелевантности – попытка измерить массу тела по его температуре.

Но вернемся к понятию репрезентативности. В то время как точность измерений зависит от размера выборки, размер выборки не гарантирует ее репрезентативности. Репрезентативность выборки главным образом обеспечивается способом отбора ее участников (респондентов). Примером явного нарушения репрезентативности может послужить шутка о том, что интернет-опрос показал, что 100% людей пользуется интернетом.

Можно выделить несколько вариантов нарушения репрезентативности выборки: когда опрошены не те люди и когда опрошено слишком много (или мало) определенных людей (например, женщин намного больше, чем мужчин). Кроме того, чем меньше размер выборки, тем меньше вероятность того, что она будет репрезентативной. Например, допустим, 1% населения мог бы заинтересоваться новой услугой. Это 1 из 100 людей. Если размер выборки составляет всего 60 человек, то в вашей выборке может отсутствовать человек, который, скорее всего, будет заинтересован в услуге. Ваша выборка менее репрезентативна, потому что она меньше. Ваши результаты будут разными в зависимости от того, содержит ли ваша выборка одного из этих людей или нет. Пример репрезентативной и нерепрезентативной выборки показан на рис.2.

Пример репрезентативной и нерепрезентативной выборки

Рис.2. Пример репрезентативной и нерепрезентативной выборки

На рис.3 показана та же по составу генеральная совокупность, но с другим расположением объектов внутри круга.

Пример репрезентативной и нерепрезентативной выборки при другом расположении объектов генеральной совокупности

Рис.3. Пример репрезентативной и нерепрезентативной выборки при другом расположении объектов генеральной совокупности

Говоря простым языком, репрезентативная выборка – это такая выборка, в которой представлены все подгруппы, важные для исследования. Помимо этого, характер распределения рассматриваемых параметров в выборке должен быть таким же, как в генеральной совокупности.

Простой случайный отбор респондентов представляется оптимальным способом формирования репрезентативной выборки. Поскольку в этом случае у любого представителя генеральной совокупности одинаковая вероятность попасть в выборку, в нее попадут люди с разными характеристиками пропорционально их долям в генеральной совокупности. В итоге выборка будет представлять собой нечто вроде уменьшенной копии генеральной совокупности.

Случайность отбора респондентов в выборку обеспечивается разными способами. Например, для телефонного опроса жителей города берется база данных всех телефонных номеров, и номера респондентов случайным образом выбираются компьютером (с использованием генератора случайных чисел). При уличном опросе интервьюеров распределяют по случайно выбранным точкам и инструктируют опрашивать каждого N-ного прохожего.

Наглядным примером репрезентативной выборки может служить пицца. Если целая пицца – это генеральная совокупность, которую мы хотим изучить, то кусок пиццы – это выборка. Как правило, достаточно одного куска пиццы, чтобы судить обо всей пицце (при условии, что ингредиенты равномерно распределены по ее поверхности). Таким образом, кусок пиццы пиццы на рис.4 – это репрезентативная выборка из пиццы.

 Наглядный пример репрезентативной выборки (пицца)

Рис.4. Наглядный пример репрезентативной выборки (пицца)

Важно отметить, что не любой кусок пиццы будет репрезентативной выборкой. Разные способы получения куска пиццы могут принципиально повлиять на качество исследования и выводы, которые будут получены при анализе каждого варианта выборки (рис.4)

(рисунок в сушильной камере, готовится к публикации)

Рис.5. Наглядный пример формирования репрезентативной и нерепрезентативной выборки.

Еще один показательный пример формирования репрезентативной выборки – кастрюля, содержимое которой мы должны узнать (допустим, там скрывается борщ). Мы только один раз можем зачерпнуть из кастрюли ложкой (провести исследование). В нашем примере ложка – это выборка, а содержимое кастрюли – генеральная совокупность.

Если мы зачерпнем сверху, то придем к выводу, что в кастрюле бульон. Если снизу – решим, что в кастрюле мясо. Зачерпнув где-то посередине, мы получим картошку или капусту. В любом из трех случаев выводы будут неверны. Чтобы получить достоверный результат, нам стоит хорошенько перемешать содержимое кастрюли, перед тем как пробовать его. Перемешивание в данном случае – аналог процедуры простого случайного отбора, поскольку оно предоставляет всем ингредиентам примерно равную вероятность попадания в ложку-выборку (или тарелку-выборку).

Борщ как модель, демонстрирующая репрезентативность выборки

Рис.6. Борщ как модель, демонстрирующая репрезентативность выборки.

Читайте также:  Как определить воспроизводимость результатов измерений

В реальности применить простой случайный отбор респондентов не всегда удается в полной мере. Например, мы можем абсолютно корректно отобрать в выборку нужное количество номеров домашних телефонов случайным образом, но при их прозвоне выяснится, что дозвониться и поговорить удается преимущественно с пенсионерами, а «поймать» дома молодежь и работающих людей получается плохо.

Возвращаясь к примеру с борщом, если у нас вместо кастрюли – огромный ресторанный котел, а в руках все та же обычная ложка, перемешивание будет неэффективным. Чтобы решить задачу, потребуются иные подходы. Например, мы можем теоретически разделить глубину котла на несколько слоев и постараться зачерпнуть содержимое из каждого слоя (из случайного места слоя: не только в центре, но и по краям). Таким образом, наша итоговая выборка будет состоять уже из нескольких выборок и при этом адекватно отражать содержимое всех слоев котла. Подобные альтернативные подходы называются типами выборки, которых придумано достаточно много для того, чтобы максимизировать репрезентативность выборки в сложных условиях реального мира.

Последствия нарушения репрезентативности выборки: некорректные выводы исследования, выброшенный на ветер бюджет исследования, финансовые потери вследствие применения неправильных выводов. Вы можете выбрать валидную исследовательскую методику, рассчитать объем выборки, обеспечивающий приемлемую точность измерений, но, если выборка исследования нерепрезентативна, получить достоверную информацию не удастся.

Самым известным примером нарушения репрезентативности выборки является история провала американского журнала «Литературный дайджест».

В 1936 году журнал в очередной раз провел почтовый опрос общественного мнения о вероятных результатах грядущих президентских выборов в США. До 1936 года опрос всегда правильно предсказывал победителя. Опрос 1936 года показал, что победителем с большим отрывом станет кандидат от республиканцев, но в итоге победителем оказался представитель демократов.

Таким образом, гигантская выборка (около 2,4 млн. человек) не обеспечила достоверных результатов. В чем же заключалась причина ошибки?

Называются две основные причины провала: смещение при формировании выборки и смещение вследствие отказа респондентов от участия в опросе.

Прежде всего, журнал включил своих подписчиков в список для рассылки анкет и, желая расширить выборку, использовал два других доступных тогда списка граждан: зарегистрированных автовладельцев и пользователей телефонов. Во времена Великой Депрессии представители этих групп отличались от остального населения более высоким доходом, как и подписчики самого журнала. Таким образом, полученная база для рассылки не являлась корректным отражением структуры населения США.

Вторая проблема с опросом заключалась в том, что из 10 миллионов человек, чьи имена были в первоначальном списке рассылки, только 2,4 миллиона ответили на опрос. Вероятно, высокий процент отказов был связан с тем, что опрос проводился по почте. Уже в те времена американцы относились к почтовым рассылкам как к спаму. Таким образом, размер выборки составил примерно одну четверть от того, что первоначально планировалось. Когда доля ответивших низка (как это было в данном случае), считается, что исследование страдает от необъективности ответов.

У этой истории две морали: Большая, но неправильно сформированная выборка гораздо хуже маленькой, но правильно сформированной выборки. При проведении опроса не упускайте из внимания смещение отбора и смещение в результате отказов.

Пример из военной практики. Во Вторую мировую войну американские военные столкнулись со следующей проблемой. Не все американские бомбардировщики после задания возвращались на базу. На вернувшихся самолетах оставалось множество пробоин от выстрелов противника, но распределены они были неравномерно: больше всего на фюзеляже и прочих частях, меньше в топливной системе и гораздо меньше — в двигателе. Командованию казалось логичным, что в наиболее поврежденных местах нужно установить больше брони.
Привлеченный к решению задачи математик возразил: данные как раз показывают, что самолет, получивший пробоины в этих местах, еще может вернуться на базу. А самолет, которому попали в бензобак или двигатель, выходит из строя и не возвращается. Поэтому укреплять следует те места, которые у вернувшихся самолетов повреждены меньше всего.

Пробоины на вернувшихся самолётах.

Рис .7. Пробоины на вернувшихся самолётах.
Получившие повреждения в других местах не смогли вернуться на базу

Эта задача служит примером нарушения репрезентативности выборки, когда в нее включены не те респонденты: в данном случае, вернувшиеся самолеты, в то время как не вернувшиеся проигнорированы.

Применительно к маркетинговым исследованиям, эта ситуация подобна следующей. При опросе клиентов бизнеса будет ошибкой опрашивать только текущих клиентов и не опрашивать потерянных клиентов (а какие «пробоины» получили они?).

При опросе посетителей ТРЦ важно правильно расставить интервьюеров. Например, если поставить интервьюеров только у главного входа, в выборку не попадут посетители, приехавшие в ТРЦ на автомобиле и попавшие в него через парковку. Как следствие, выводы, полученные на собранных данных, будут корректны только для той части посетителей, которые приходят в ТРЦ пешком, а значит, делают меньше покупок, не покупают габаритные товары, живут ближе к ТРЦ, чем приезжающие на автомобиле.

Другой пример. Бывает, что в разных районах города сбор анкет идет с разной скоростью: где-то (например, в центре города) большой пешеходный поток и у людей есть время на участие в опросе (отдыхающие, в отпуске, офисные сотрудники на обеде), а на окраинах либо мало людей на улицах, либо все спешат на работу и отказываются участвовать. В результате, если не ограничивать доли районов, в выборке будут преобладать люди из центрального района, которые могут значимо отличаться от остальных людей родом занятий, уровнем дохода и образования, уровнем осведомленности о магазинах и др. Таким образом, собранная выборка уже не будет репрезентативной по отношению к населению всего города.

Несмотря на многие положительные стороны онлайн-опросов, такие как экономичность, оперативность сбора информации, удобство ее обработки и т. д., некоторые их особенности напрямую угрожают репрезентативности исследования:

Во-первых, участники онлайн-опросов – это, как правило, активные пользователи интернета, хорошо в нем разбирающиеся и больше подверженные влиянию интернет-культуры, чем обычные люди.

Во-вторых, люди, у которых есть время и желание регулярно участвовать в онлайн-опросах за небольшое вознаграждение, скорее всего, значительно отличаются от остальных людей как по социально-демографическим, так и по психографическим характеристикам.

В-третьих, профессиональное участие в опросах приводит к так называемой профессиональной деформации, когда ответы респондентов на вопросы новых исследований обусловлены предыдущим опытом, но не жизненным, а опытом участия в других опросах.

Таким образом, в данном случае возникает та ситуация, когда опрашиваются не те люди, хотя по формальным характеристикам они подходят под описание целевой аудитории.

Итак, чтобы получить достаточно точные данные об интересующей нас группе людей, необязательно опрашивать их всех, благодаря свойству репрезентативности выборки.

«Чем больше, тем лучше» – неправильный подход к формированию выборки.

Небольшая репрезентативная выборка лучше большой, но нерепрезентативной выборки. Применительно к выборке не стоит пугаться слова «случайная». Это вовсе не значит, что в исследовании будут получены случайные результаты. Напротив, случайный подход к формированию выборки делает ее максимально похожей на генеральную совокупность, а значит, репрезентативной.

При проектировании выборки следует учитывать опасность смещения структуры выборки вследствие особенностей сбора информации и других условий.

Источник

Репрезентативность и способы отбора выборки.

Тема «Выборочное наблюдение» является одной из центральных в курсе статистики. Это обусловлено, прежде всего, взаимосвязью данной темы с другими темами, в ососбености, со статистическим наблюдением, статистическими показателями, таблицами и др. Основываясь на фундаментальных теоретических положениях, в частности, предельных теоремах закона больших чисел (Чебышева-Ляпунова, Бернулли и др.), выборочное наблюдение тесно связано с курсами математической статистики и теории вероятностей. Поэтому освоение теоретического материала, умение правильно решать практические задачи по данной теме, грамотно интерпретировать полученные результаты служат необходимым условием успешного изучения курса статистики в целом и связанных с ней наук.

Читайте также:  Обработка результатов наблюдений содержащих случайные погрешности

Формирование задач данной темы обусловлено практическими вопросами, требующими своего решения при организации выборочного наблюдения и анализе его результатов. Такими вопросами являются определение способа отбора и процедуры выборки, вычисление ошибок выборки и построение доверительных интервалов выборочных характеристик, а также расчет необходимого объема выборки.

Выборочное наблюдение является одним из видов несплошного наблюдения, которое получило широкое распространение в статистической практике. Цель выборки заключается в том, чтобы на основе выборочных характеристик — средних и относительных, — получить соответствующие обобщающие показатели генеральной совокупности. Необходимо усвоить некоторые понятия выборки. Совокупность, из которой отбираются единицы для обследования, называется генеральной совокупностью (N). Часть единиц, отобранная для обследования, называется выборочной совокупностью, а число единиц попавших в выборку — объемом выборки (n) или численностью выборки. Обобщающие показатели, исчисляемые для каждой совокупности называются соответственно: генеральная средняя – х; генеральная дисперсия — s 2 ; генеральная доля — р; выборочная средняях;выборочная доля — w; выборочная дисперсия — s 2 .

Репрезентативность и способы отбора выборки.

Качество результатов выборочного наблюдения зависит от того, насколько состав выборки представляет генеральную совокупность, иначе говоря, от того, насколько выборка репрезентативна (представительна).

Для обеспечения репрезентативности выборки необходимо соблюдение принципа случайности отбора единиц. Принцип случайности предполагает, что на включение или исключение объекта из выборки не может повлиять какой-либо фактор, кроме случая.

Существуют различные способы формирования выборочной совокупности: — индивидуальный, включающий в себя такие разновидности, как собственно-случайный, механический, стратифицированный;

Собственно случайный отбор осуществляется с помощью жеребьевки или по таблице случайных чисел. В первом случае всем элементам генеральной совокупности присваивается порядковый номер и на каждый элемент заводится жребий — пронумерованные шары или карточки-фишки, которые перемешиваются и помещаются в ящик из которого затем отбираются на удачу. Во втором случае производится выбор случайных чисел (из специальных таблиц), которые образуют порядковые номера для отбора.

На практике, в настоящее время, в качестве способа отбора, обычно применяют механическое формирование выборочной совокупности, не связанное с процедурами получения случайных чисел. При этом способе отбирается каждый (N/n)-й элемент генеральной совокупности. Например, если имеется совокупность из 100 тыс.ед. и требуется выборка в 1000, то в нее попадает каждый сотый элемент. Если единицы в совокупности не ранжированы относительно изучаемого признака, то первый элемент выбирается наугад, произвольно, а если ранжированы то из середины первой сотни.

Отбор единиц из неоднородной совокупности осуществляется так называемым стратифицированным (типическим, расслоенным) способом, дающим модифицированную форму выборки. В этом случае генеральную совокупность предварительно разбивают на однородные группы с помощью типологической группировки, после чего производят отбор единиц из каждой группы в выборочную совокупность случайным или механическим способом. Этот метод гарантирует, что единицы разных групп (слоев) включаются в выборку пропорционально их численности в генеральной совокупности.

Особая форма составления выборки предполагает серийный, или гнездовой, отбор, при котором в порядке случайной или механической выборки выбирают не единицы, а определенные районы, серии (гнезда), внутри которых производится сплошное наблюдение.

Особенности обследуемых объектов определяют два метода отбора единиц в выборочную совокупность – повторный и бесповторный. При повторном отборе каждая попавшая в выборку единица или серия возвращается в генеральную совокупность и имеет шанс вторично попасть в выборку. При этом вероятность попадания в выборочную совокупность всех единиц генеральной совокупности остается одинаковой. Бесповторный отбор означает, что каждая отобранная единица (или серия) не возвращается в генеральную совокупность и не может подвергнуться вторичной регистрации, а потому для остальных единиц вероятность попасть в выборку увеличивается.

Бесповторный отбор дает более точные результаты по сравнению с повторным, так как при одном и том же объеме выборки наблюдение охватывает больше единиц генеральной совокупности. Поэтому он находит более широкое применение в статистической практике. И только в тех случаях, когда бесповторный отбор провести нельзя, используется повторная выборка (при обследовании потребительского спроса, пассажирооборота и т.п.).

Источник



Что такое репрезентативность результатов выборочного наблюдения

О возможности судить о целом по части миру рассказал российский математик П.Л. Чебышев. «Закон больших чисел» простым языком можно сформулировать так: количественные закономерности массовых явлений проявляются только при достаточном числе наблюдений. Чем больше выборка, тем лучше случайные отклонения компенсируют друг друга и проявляется общая тенденция.

А.М. Ляпунов чуть позже сформулировал центральную предельную теорему. Она стала фундаментом для создания формул, которые позволяют рассчитать вероятность ошибки (при оценке среднего по выборке) и размер выборки, необходимый для достижения заданной точности.

Строгие формулировки:

С увеличением числа случайных величин их среднее арифметическое стремится к среднему арифметическому математических ожиданий и перестает быть случайным. Общий смысл закона больших чисел — совместное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая.

Таким образом з.б.ч. гарантирует устойчивость для средних значений некоторых случайных событий при достаточно длинной серии экспериментов.

Распределение случайной величины, которая получена в результате сложения большого числа независимых случайных величин (ни одно из которых не доминирует, не вносит в сумму определяющего вклада и имеет дисперсию значительно меньшею по сравнению с дисперсией суммы) имеет распределение, близкое к нормальному.

Из ц.п.т. следует, что ошибки выборки также подчиняется нормальному распределению.

  • изменчивость признака (чем разнообразней показания, тем больше наблюдений нужно, чтобы это уловить);
  • размер эффекта (чем меньшие эффекты мы стремимся зафиксировать, тем больше наблюдений необходимо);
  • уровень доверия (уровень вероятности при который мы готовы отвергнуть нулевую гипотезу)

Формулы для определения достаточного объема выборки

Предельная ошибка выборки

Репрезентативность — это степень соответствия характеристик выборки характеристикам генеральной совокупности. Только данные по репрезентативным выборкам можно экстраполировать на всю популяцию.

Репрезентативность достигается за счет случайного отбора. Случайный отбор — хорошо. Детерминированный отбор — плохо. Он искажает структуру выборки и как следствие результат измерений. Нельзя судить о среднем росте россиян по росту ста баскетболистов, которые тренируются во дворе вашего дома, просто потому что вам так удобно.

Репрезентативность

Существует методология, которая позволяет сократить детерминированность при формировании выборки и приблизиться к случайному отбору.

Стратифицированная выборка. Выделяются объективно существующие страты и из каждой страты отбираются единицы пропорционально их доле в генеральной совокупности. Например для опроса россиян страты могут быть определены пропорцией населения в регионах. После чего респонденты внутри каждого региона отбираются случайным образом.

Механический отбор. Все объекты сортируются по порядковым номерам, после чего осуществляется отбор с шагом n. Например, можно отсортировать телефонные номера потенциальных участников исследования и звонить каждому 100-му.

Серийная выборка (гнездовая, кластерная). Объективно существующие группы отбираются случайным образом. Объекты внутри групп обследуются полностью. Например вскрывается один контейнер продукции и каждый товар проверяется на брак.

Метод снежного кома. У каждого респондента запрашиваются контакты его знакомых, которые подходят под условия отбора. Условия случайности отбора грубо нарушается, но это один из способов провести исследование среди труднодостижимых групп. Как быть иначе, если ваша цель — опросить любителей стальных гоночных велосипедов выпущенных не позже 1987 года.

Стихийная выборка (выборка по удобству). Применяется, когда низкая цена получения данных — это главный приоритет. Для повышения качества стихийной выборки на неё накладываются квоты. Заранее рассчитываются пропорции признаков в выборке так, чтобы они соответствовали структуре генеральной совокупности. В социологии такими признаками служат пол, возраст, профессия, семейный статус, регион проживания.

Источник