Теорема Виета формулы методы и примеры решения

Теорема Виета — формулы, методы и примеры решения

Для применения формул теоремы Виета для квадратного уравнения следует разобрать некоторые термины и математические определения. Квадратным уравнением вида Am 2 + Bm + C = 0 называется многочлен второй степени, состоящий из коэффициента А при некоторой неизвестной в квадрате и суммы произведения второго коэффициента на неизвестную величину и константы С. Этот многочлен преобразовывается в уравнение только при равенстве нулевому значению. Константу С еще называют свободным членом.

Корнями называются такие значения неизвестных, при подстановке которых тождество считается верным. Следует отметить, что в результате отдельных математических преобразований появляются дополнительные корни. Особенно это касается различных замен в тригонометрических функциях. Однако при подстановке корней равенство не соблюдается. Математики называют их ложными. После решения уравнения специалисты рекомендуют произвести подстановку этих значений в исходное уравнение. Этот прием помогает избавиться от нежелательных решений.

Поиск корней при помощи теоремы Виета принадлежит к быстрым методикам, поскольку избавляет человека от ненужных расчетов по формулам с применением дискриминанта.

Виды квадратных уравнений

Квадратные уравнения бывают нескольких видов, поскольку не во всех случаях коэффициенты получаются отличными от нуля. Математики классифицировали их на 2 типа:

  • полные;
  • неполные.

Первыми называются выражения со всеми коэффициентами (A, B и C), отличными от нуля. Если число перед неизвестной не указано, то считается, что оно эквивалентно 1. Неполными считаются любые уравнения, в которых отсутствует B или C. Однако бывают случаи, когда оба последних коэффициента соответствуют нулю, тогда тождество имеет следующий вид: Am 2 = 0. Кроме того, существует еще один критерий распределения на виды, основанный на степени приведенности. По этому признаку выражения делятся на приведенные и неприведенные классы.

К первым следует отнести любые равенства, у которых коэффициент равен 1. Во всех остальных случаях (А > 1) тождества являются неприведенными.

Условие использования закона

Закон Виета применим не ко всем уравнениям. Математики сформулировали важные условия, при соблюдении которых возможно воспользоваться этим правилом: уравнение должно быть приведенным и иметь значение дискриминанта больше 0. Из этого условия можно сделать вывод: когда равенство невозможно преобразовать к приведенному, следует применять другие методики нахождения корней, а не правило Виета.

Существует простой алгоритм преобразования уравнения к необходимому виду. Для этого нужно выполнить несложную операцию деления каждого коэффициента на А. Например, следует преобразовать уравнение 4p 2 + 8p + 16 = 0 в приведенное. Следуя описанному алгоритму, получается такое соотношение: [(4p 2 ) / 4] + [8p / 4] + [16 / 4] = 4p 2 + 2p + 4 = 0.

Специалисты рекомендуют избегать ситуаций получения обыкновенных дробей в результате преобразования. Примером является тождество 3p 2 + 2p — 4 = 0. Его можно свести к приведенному, но применить теорему будет весьма сложно, поскольку равенство будет иметь такой вид: p 2 + (2p / 3) — (4 / 3) = 0. Рекомендуется решать такие уравнения, используя другие методики (построение графика функции, при помощи программ или по формуле дискриминанта).

Применение теоремы

Формулировка закона Виета для квадратного уравнения Am 2 + Bm + C = 0 следующая: сумма корней соответствует коэффициенту А, взятому с противоположным знаком, а результат произведения эквивалентен свободному члену С. Решение осуществляется методом подбора соответствующих числовых значений. Однако каждая теорема должна доказываться.

Чтобы осуществить эту операцию, нужно воспользоваться специальными формулами корней, используя дискриминант. Нужно предположить, что для уравнения Am 2 + Bm + C = 0 справедливы два равенства: m1 + m2 = -B и m1 * m2 = C. Выражая значения корней через дискриминант в обобщенном виде, можно получить такие тождества:

  1. m1 = [-B — D^(½)] / (2 * A).
  2. m2 = [-B + D^(½)] / (2 * A).

Далее нужно найти сумму m1 и m2: [-B — D^(½)] / (2 * A) + [-B + D^(½)] / (2 * A). Чтобы упростить полученное выражение, следует воспользоваться таким алгоритмом:

  1. Привести дроби к общему знаменателю: [(-B — D^(½)) + (-B + D^(½))]/(2 * А).
  2. Упростить выражение (разложение на множители): [-B — D^(½) — B + D^(½)]/(2 * А) = (-2B) / (2 * A) = — B / A = -B / 1 (А = 1).

После этого нужно доказать, что произведение корней эквивалентно С. Для этого необходимо перемножить m1 = [-B — D^(½)] / (2 * A) и m2 = [-B + D^(½)] / (2 * A), воспользовавшись правилом умножения дробей обыкновенного типа по такой методике:

  1. Перемножить числители и знаменатели: [-B — D^(½)] / (2 * A) * [-B + D^(½)] / (2 * A) = [(-B + D^(½)) * (-B — D^(½))] / (4 * A 2 ).
  2. Упростить: [B 2 — D] / 4A 2 = [B 2 — (-B 2 — 4 * A * C)] / 4A 2 = (B 2 — B 2 + 4 * C) / 4 = C (при А = 1).

Вторая формула доказана. Однако перед решением обязательно следует вычислить значение дискриминанта, поскольку при D = 0 уравнение имеет только один корень. Существует обратная теорема Виета. У нее такая формулировка: если сумма чисел m1 и m2 соответствует некоторому значению В, взятому с противоположным знаком, а также их произведение эквивалентно свободному члену многочлена второй степени, значит, они являются корнями Аm 2 + Bm + C = 0. Это утверждение имеет доказательство, для которого следует выполнить следующие шаги:

  1. Подставить m1 и m2 в исходное уравнение: m 2 — (m1 + m2) * m + m1 * m2 = 0.
  2. Раскрыть скобки и привести подобные слагаемые: m 2 — (m1 * m — m2 * m + m1 * m2 = (m — m1) * (m — m2) = 0.
  3. Найти корни тождества в пункте 2: m = m1 и m = m2.

Следовательно, теорема доказана, поскольку числа m1 и m2 являются корнями уравнения. Далее нужно рассмотреть приведенные кубические уравнения и порядок применения утверждения Виета.

Кубические равенства с неизвестным

Можно также применять теорему Виета для кубического уравнения вида А * m 3 + B * m 2 + C * m + D = 0. Коэффициент А должен быть равен 1. Находятся корни при помощи перебора значений, но сделать это сложно, поскольку необходимо решить систему, состоящую из трех равенств:

  1. m1 + m2 + m3 = -B.
  2. m1 * m2 + m1 * m3 + m2 * m3 = C.
  3. m1 * m2 * m3 = -D.

Числа m1, m2 и m3 являются корнями. Кроме того, следует обратить внимание на образование ложных результатов, поскольку уравнение является кубическим. Ученые пришли к выводу о том, что чем выше степень, тем больше образовывается ложных ответов. Они рекомендуют применять специальное программное обеспечение для поиска решения. Если его нет под рукой, то можно построить график функции, а затем найти точки пересечения с осью абсцисс. Существуют также специализированные веб-сервисы. Они называются онлайн-калькуляторами.

Примеры решения

Несмотря на простоту теоремы, существует несколько типов упражнений на эту тему. Они делятся на следующие классы:

  • простые;
  • средние;
  • продвинутые;
  • сложные.

К первым следует отнести задачи на простой подбор корней. Средними считаются задания на преобразование квадратного уравнения к приведенному.

Продвинутыми являются любые тождества, которые необходимо упростить и привести к коэффициенту А = 1. Сложные — особый вид. Для них следует применить все знания в области математики. Кроме того, нужно осуществить объяснение хода решения. В некоторых случаях необходимо построить таблицу зависимостей и начертить график.

Интересный факт заключается в том, что именно этот класс выражений существенно развивает умственные способности человека на уроках. Встречаются также задачи на пересечения параболы и прямой, которая может проходить под определенным углом. Далее нужно разобрать практическое применение теоремы Виета на примерах с решением для различных классов задач.

Простой и средний

Пусть дано тождество m 2 — 5 * m + 6 = 0. Необходимо найти его корни. Для решения следует применить такой алгоритм:

  1. Найти дискриминант: D = (-5)^2 — 4 * 1 * 6 = 1 (два корня, поскольку D > 0).
  2. Методом перебора можно получить решения m1 = 2 и m2 = 3.
  3. Проверка I корня: 2 2 — 5 * 2 + 6 = 4 — 10 + 6 = 0 (соответствует).
  4. Подстановка для II: 3 2 — 5 * 3 + 6 = 9 — 15 + 6 = 0 (соответствует).

Следовательно, тождество решено верно. Далее можно рассмотреть средний тип упражнения. Для этого следует решить уравнение 3 * m 2 + 33 * m + 30 = 0. Найти корни можно по такому алгоритму:

  1. Преобразование к приведенному (разделить на А = 3): 3 * m 2 + 33 * m + 30 = m 2 + 11 * m + 10 = 0.
  2. Найти D: D = 121 — 4 * 10 = 81 > 0 (два).
  3. Корни: m1 = -10 и m2 = -1.
  4. Проверка: (-10)^2 + 11 * (-10) + 10 = 100 — 110 + 10 = 0 и (-1)^2 + 11 * (-1) + 10 = 1 — 11 + 10 = 0.

​Следовательно, корни m1 и m2 удовлетворяют этому уравнению. Если не получается делить все члены на А, то необходимо рассмотреть решение с помощью дискриминанта или графическим методом.

Продвинутый класс

Для иллюстрации этого вида нужно решить следующее тождество: (m — 4)^2 — 20 = -m (m — 8) + 14. Следует воспользоваться инструкцией такого вида:

  1. Раскрыть скобки: m 2 — 8 * m + 16 — 20 = -m 2 + 8 * m + 14.
  2. Перенести все слагаемые в левую часть и упростить: 2 * m 2 — 16 * m — 18 = 0.
  3. Сократить на 2: m 2 — 8 * m — 9 = 0.
  4. Найти значение D: D = 64 + 36 = 100 > 0 (2).
  5. Вычисление корней: m1 = -1 и m2 = 9.
  6. Проверка: (-1)^2 — 8 * (-1) — 9 = 1 + 8 — 9 = 0 и 9 2 — 8 * 9 — 9 = 81 — 72 — 9 = 0.
Читайте также:  Демоверсия ЕГЭ 2017 по физике ФИПИ

На основании шестого пункта можно сделать вывод, что корни подобраны правильно. Этот пример показывает, что одной теоремы недостаточно, поскольку следует уметь выполнять математическое преобразование заданного выражения. В этом классе примеров возможен случай, когда величина дискриминанта эквивалентна 0. Следовательно, у тождества с неизвестным всего один корень. К последнему невозможно применить закон Виета.

Сложные упражнения

Примером сложной задачи, которую еще называют «со звездочкой», является следующая: необходимо найти сумму, произведение и сумму квадратов решений уравнения m 2 — 7 * m + 12 = 0, не находя корней. По обычной методике нужно доказать, что у выражения с неизвестным существует два корня по формуле дискриминанта: D = 49 — 4 * 12 = 1 > 0. Следовательно, ориентируясь на последнее равенство, условие соблюдается. По теореме Виета получаются ответы на первые два вопроса:

  1. m1 + m2 = 7.
  2. m1 * m2 = 12.

Затем следует записать сумму квадратов, используя две описанные выше формулы: (m1)^2 + (m2)^2 = (m1)^2 + (m2)^2 — 2 * m1 * m2 — 2 * m1 * m2 = (m1 + m2)^2 — 2 * m1 * m2 = 7 2 — 2 * 12 = 25. Задача решена: 7; 12 и 25.

Следующий пример является довольно распространенным. Существует уравнение 5 * m 2 — 15 * m + 30 = 0. Необходимо найти сумму кубов корней и квадрат разности. Многие ученики на протяжении всей истории существования алгебры делают однотипную ошибку. Она заключается в подготовке, то есть записываются соответствующие формулы сокращенного умножения. Если их не знают, то пользуются интернетом или другими источниками. На эту операцию тратится драгоценное время. Чтобы этого избежать, необходимо воспользоваться таким алгоритмом:

  1. Сократить на общий множитель, равный 5: m 2 — 3 * m + 10 = 0.
  2. Вычислить величину дискриминанта: D = 9 — 4 * 1 * 10 = -31 < 0.

Следовательно, у равенства с неизвестными корней нет вообще. В результате невозможно найти необходимые значения. Этот прием лишний раз показывает, что можно избежать множества ошибок и не тратить время, пользуясь соответствующим алгоритмом.

Решение квадратных и кубических приведенных уравнений осуществляется при помощи соотношения Виета. Однако важным аспектом при осуществлении этой операции является нахождение величины дискриминанта.

Источник

Теорема Виета для квадратного уравнения

Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Существует три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:

  • если D < 0, корней нет;
  • если D = 0, есть один корень;
  • если D > 0, есть два различных корня.

В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.

Формула Виета

Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Доказательство теоремы Виета

Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:

Докажем, что следующие равенства верны

  • x₁ + x₂ = −b,
  • x₁ * x₂ = c.

Чтобы найти сумму корней x₁ и x₂ подставим вместо них то, что соответствует им из правой части формул корней. Напомним, что в данном квадратном уравнении x 2 + bx + c = 0 старший коэффициент равен единице. Значит после подстановки знаменатель будет равен 2.

    Объединим числитель и знаменатель в правой части.

Мы доказали: x₁ + x₂ = −b.

Далее произведем аналогичные действия, чтобы доказать о равенстве x₁ * x₂ свободному члену c.

    Подставим вместо x₁ и x₂ соответствующие части из формул корней квадратного уравнения:

Мы доказали: x₁ * x₂ = c.

Значит сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком (x₁ + x₂ = −b), а произведение корней равно свободному члену (x₁ * x₂= c). Теорема доказана.

Обратная теорема Виета

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Она формулируется так:

Обратная теорема Виета

Если числа x₁ и x₂ таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x 2 + bx + c = 0.

Обратные теоремы зачастую сформулированы так, что их утверждением является заключение первой теоремы. Так, при доказательстве теоремы Виета стало понятно, что сумма x₁ и x₂ равна −b, а их произведение равно c. В обратной теореме это является утверждением.

Докажем теорему, обратную теореме Виета

Корни x₁ и x₂ обозначим как m и n. Тогда утверждение будет звучать следующим образом: если сумма чисел m и n равна второму коэффициенту x 2 + bx + c = 0, взятому с противоположным знаком, а произведение равно свободному члену, то числа m и n являются корнями x 2 + bx + c = 0.

Зафиксируем, что сумма m и n равна −b, а произведение равно c.

Чтобы доказать, что числа m и n являются корнями уравнения, нужно поочередно подставить буквы m и n вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями x 2 + bx + c = 0.

Читайте также:  Демоверсия ЕГЭ 2017 по физике ФИПИ

    Выразим b из равенства m + n = −b. Это можно сделать, умножив обе части на −1:

При x = m получается верное равенство. Значит число m является искомым корнем.

  1. Аналогично докажем, что число n является корнем уравнения. Подставим вместо x букву n, а вместо c подставим m * n, поскольку c = m * n.
  2. При x = n получается верное равенство. Значит число n является искомым корнем.

Мы доказали: числа m и n являются корнями уравнения x 2 + bx + c = 0.

Примеры

Для закрепления знаний рассмотрим примеры решения уравнений по теореме, обратной теореме Виета.

Дано: x 2 − 6x + 8 = 0.

Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

Имея эти два равенства можно подобрать подходящие корни, которые будут удовлетворять как равенству обоим равенствам системы.

Подбор корней удобнее выполнять с помощью их произведения. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x₁ и x₂ надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x₁ + x₂ = 6. Значения 4 и 2 подходят обоим равенствам:

Значит числа 4 и 2 являются корнями уравнения x 2 − 6x + 8 = 0.

Неприведенное квадратное уравнение

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым, то есть его первый коэффициент равен единице:

ax 2 + bx + c = 0, где а = 1.

Если квадратное уравнение не является приведенным, но задание связано с применением теоремы, нужно обе части разделить на коэффициент, который располагается перед x 2 .

  1. Получилось следующее приведенное уравнение:

    Получается коэффициент равен, свободный член —. Значит сумма и произведение корней будут иметь вид:

Источник

Применение теоремы Виета

Теорема Виета в массовом школьном сознании ассоциируется с нахождением корней квадратного уравнения. Для одних это какое-то магическое заклинание, позволяющее решать задачу «не через дискриминант», для других действенный способ сэкономить время на решении.

Мы предполагаем, что большинство читающих умеют применять эту теорему для поиска корней квадратного уравнения, поэтому поговорим о некоторых тонкостях её использования.

Как на практике подбирать корни

Часть учеников, даже выписав соотношение между корнями и коэффициентами квадратного уравнения, всё равно испытывают трудности с подбором корней.

Дело в том, что многие школьники считают подбор неким бессистемным действием сродни хаотичной стрельбе с закрытыми глазами. Однако, любой подбор должен быть осознанным перебором, то есть в основе иметь какую-то логику.

Проблема состоит ещё и в том, что те, кто умеют быстро подбирать значения, сами порой не осознают, что делают это не интуитивно, а по некой системе. В итоге они не задумываются над своими действиями и не могут объяснить другим, как рассуждают, считая, что «всё очевидно». Тем самым для остальных практическое применение теоремы Виета становится магией для посвященных.

Хотя достаточно одной идеи, чтобы значительно ускорить перебор вариантов.

Итак, давайте рассмотрим квадратное уравнение x ²-8 x +15=0, которое даёт нам вот такие условия для корней:

Обычно их выписывают именно в таком порядке: первым соотношением идёт сумма, а затем произведение. Это и играет злую шутку с учениками. Они начинают ориентироваться на первое равенство и перебирать варианты целых слагаемых, которые потом подставляют во второе соотношение. В итоге тратится много сил на лишние (хотя в данном случае и довольно быстрые) вычисления.

Cекрет же эффективного перебора прост: надо начинать со второго соотношения, то есть отталкиваться от произведения.

В предложенном примере возможны два варианта: 15 = 3 ⋅ 5 = 1 ⋅ 15. Конечно, здесь мы сразу учли поправку на знаки множителей. Так как произведение положительно, то знаки множителей совпадают, а так как сумма тоже положительна, то и сами числа тоже положительные. В итоге благодаря разложению на множители и последующей проверке суммы легко находим, что это числа 3 и 5.

Иногда, конечно, бывают неприятные числа, которые допускают больше вариантов разложения на множители. Например, 24, 36 или 48. Но такие случаи довольно редки и обычно грамотный перебор допускает не более 3-4 вариантов.

Отметим также, что хотя теорема Виета работает для любых действительных корней, её в таком виде лучше использовать, когда первый коэффициент a равен единице. В этом случае корни будут целыми и подбор будет эффективным. Иначе следует сразу честно считать через дискриминант.

И конечно, надо учитывать, что в некоторых ситуациях подбор корней бессмысленен. Например, в случае иррациональных корней или если действительных корней вообще нет. В таком случае мы советуем ученикам применять правило «10 секунд»: если за это время не удалось подобрать корни — считайте честно через дискриминант.

Полезные соотношения между коэффициентами (а+b+c=0 и а-b+c=0)

Теорема Виета позволяет не только подбирать корни, но даёт два интересных следствия, про которые мы писали в прошлом году. Они настолько важные, что повторим наши рассуждения и здесь.

Допустим, что вы столкнулись с квадратным уравнением, в котором сумма коэффициентов равна 0. То есть для уравнения аx ²+ bx + c =0 выполнено условие а + b + c =0.

Для удобства давайте сразу будем работать с конкретным уравнением. Например, для определённости возьмём такое уравнение: 4 x ²-5 x +1=0. Очевидно, что 4-5+1=0. И это означает, что единица автоматически является решением. Действительно, подставим её в наше уравнение: 4⋅1²-5⋅1+1=4-5+1=0 и убедимся, что это так.

Далее используем теорему Виета: произведение корней равно с / а . А так как один и них равен 1 , то легко получаем, что второй равен с / а. А в нашем конкретном примере второй корень равен 1/4.

Рассуждения для случая а-b+c=0 аналогичны. Там один из корней равен -1.

В итоге мы получаем вот такие интересные ситуации, при которых корни находятся мгновенно:

Уравнения с такими условиями на практике встречаются довольно часто. Составители задач ленятся придумывать новые квадратные уравнения и пользуются указанными соотношениями.

Удивительно, что этот приём знают далеко не все ученики физмат классов, хотя он позволяет существенно сократить время решения простых задач.

Быстрая проверка корней

Ещё одно применение теоремы Виета, про которое забывают многие ученики, — это проверка найденных корней. Она позволяет мгновенно проверить рациональные корни вашего квадратного уравнения, если вы их считали через дискриминант.

Например, есть уравнение 48 x ²-46 x +5=0. После некоторых вычислений получаем корни 1/8 и 5/6. Можно сразу выписать их в ответ, а можно потратить 2-3 секунды и убедиться, что 1/8⋅5/6=5/48, то есть выполнено одно из соотношений в теореме Виета и xx ₂= c / a.

Конечно, одна эта проверка не является абсолютной гарантией правильности найденных корней. Но как минимум в 95% случаев она вылавливает ошибки. Особенно хорошо она вылавливает случаи, когда ученики забывают что-то разделить или умножить (например, забывают указать двойку в знаменателе для корней).

Если же вы хотите стопроцентной уверенности в найденных корнях, можете проверить и другое условие — для суммы корней.

Формулы Виета для кубического уравнения

Теорема Виета работает не только для квадратного уравнения. Её можно использовать для многочленов любой степени.

Второй по распространённости применения этой теоремы идёт (правда с большим отрывом) многочлен третьей степени.

Пусть у нас есть кубическое уравнение ax ³+ bx ²+ cx + d=0, которое имеет три действительных корня. Тогда многочлен слева можно представить в виде:

Читайте также:  Демоверсия ЕГЭ 2017 по физике ФИПИ

Раскрываем справа скобки и приводим подобные слагаемые. В итоге получаем следующую картину:

Приравниваем коэффициенты и получаем следующие соотношения:

В школьных задачах и стандартных экзаменах формулы Виета для кубического уравнения не применяются, но на вступительных испытаниях более высокого уровня вполне могут пригодиться. Например, они дважды использовались вот в Неправильное употребление названия теоремы

Нужно понимать, что при поиске корней квадратного уравнения мы всё-таки используем не теорему Виета, а обратную теорему Виета. И правильно говорить, что мы ищем корни «методом подбора с проверкой по теореме, обратной теореме Виета». Вот здесь давний подписчик нашей группы указывает на отличия и призывает преподавателей к правильному произношению. Цель понятна — воспитать у учеников математическую грамотность и умение чётко проговаривать формулировки.

Однако, некоторые внимательные зрители заметили, что в наших видеоразборах задач мы всё равно говорим про «теорему Виета» и не испытываем при этом угрызений совести. Даже в этой статье мы очень вольно с ней обращаемся, не указывая её как прямую или обратную.

Мы считаем, что пусть так в строгом смысле говорить и не правильно, но при решении задач это допустимо. Тут, конечно, важен контекст. Когда мы говорим, что решаем КУ по теореме Виета, мы подразумеваем, что будем использовать некое стандартное соотношение, которое поможет нам с поиском корней. Это уже стало расхожим методом и на практике прямую теорему Виета для квадратного уравнения не используют (проще явно в уме перемножить два двучлена).

Конечно, когда были устные экзамены на какой-нибудь мехмат, то могли придраться к подобной формулировке. Но на письме всё же обычно хватает просто писать в скобках «т.Виета». А если есть опасения, то могут придраться, то можно где-то в стороне найти эти корни, а в решении просто их выписать в явном в виде без указания способа поиска. Может вас вообще просто озарило и вы их нашли, пристально вглядываясь в уравнение.

При том, что подобное вольное применение допустимо для теоремы Виета, это не значит, что мы можем использовать формулировки как хотим.

Например, теорему Пифагора и обратную теорему Пифагора важно чётко различать. Но в отличие от т.Виета, которая в реальных задачах чаще всего используется только в одну сторону, для теоремы Пифагора в реальных задачах применяется и прямая и обратная формулировка.

Источник

Решение квадратных уравнений с применением теоремы Виета

Цель: Применение теоремы Виета и ей обратной теоремы при нахождении коэффициентов в квадратных уравнениях, при решении заданий из вариантов ЕГЭ.

Воспитательные задачи: Способствовать формированию умений, применять приемы сравнений, обобщения, выделения главного, переноса знаний в новую ситуацию, развитию творческих способностей. Побуждать учащихся к самоконтролю и взаимоконтролю, самоанализу своей учебной деятельности.

Оборудование: плакаты, компьютер, экран, видеопроектор.

Ход урока

I. Вводная беседа. Устные упражнения (5 мин.)

Сегодня на уроке мы с вами вместе подведем итог, как важно применение теоремы Виета. В каких упражнениях применяется теорема и как важно ее знать и применять. (Учитель показывает презентацию, в которой сформулированы цели, задачи, структура урока). <Приложение 1>

Учащиеся формулируют теорему Виета и ей обратную теорему. У доски два ученика записывают формулы теоремы Виета для приведенного и полного квадратных уравнений:

– формулы для полного квадратного уравнения;

– формулы для приведенного квадратного уравнения;

Трое учащихся решают на дополнительных досках индивидуальные задания.

Решите уравнения и выполните проверку по теореме, обратной теореме Виета:

II. Устные упражнения (5 мин.)

Затем с учащимися решаем устные упражнения:

Найдите корни уравнения:

3. Если в квадратном уравнении сумма коэффициентов a + b + c = 0,

То Используя это свойство, решите уравнения:

4. Теорема Виета применяется при нахождении суммы и произведения корней. Покажите, как это выглядит. Перед вами уравнения:

У какого из данных уравнений:

  1. Сумма корней равна 6, а произведение – 16?
  2. Корни равны?
  3. Один из корней уравнения равен 6?
  4. Каждый из корней на 2 больше, чем корни уравнения ? Ответ обосновать.

III. Лабораторная работа (3 мин.)

Учащимся предлагается выполнить лабораторную работу.

Составьте квадратные уравнения, которые:

  • не имеют корней;
  • имеет один из корней, равный 0;
  • имеет два корня, равных по модулю, но противоположных по знаку;
  • имело бы один корень;
  • сумма коэффициентов уравнения равна 0.

Учащиеся выполняют это задание по группам (4–5 учащихся в группе).

Пример лабораторной работы:

IV. Работа с таблицей (3 мин.)

Выполнив лабораторную работу, три группы озвучивают свою лабораторную работу, а остальные группы сдают лабораторные работы на плакатах на проверку (2 мин.).

Один из учащихся (Евсеев А.) заранее готовит презентацию об исследовании знаков в приведенных квадратных уравнениях. <Приложение 2>

Все учащиеся работают с таблицей и отвечают на вопросы о знаках в квадратных уравнениях:

  1. Когда корни квадратного уравнения имеют одинаковые знаки?
  2. Когда оба корня положительные, отрицательные?
  3. Когда корни имеют разные знаки?
  4. Когда больший по модулю корень отрицателен?
  5. Когда больший по модулю корень положителен?

Сформулируйте выводы о знаках корней квадратных уравнений.

V. Тренировочные упражнения. Работа у доски (23 мин.)

Следующий этап урока: двое учащихся решают у доски задания о нахождении неизвестных коэффициентов в квадратных уравнениях.

1. В уравнении один из корней равен 7. Найдите другой корень и коэффициент р. Ответ:

2. Один из корней уравнения равен 12,5. Найдите другой корень уравнения и коэффициент с. Ответ:

Такого вида уравнения часто встречаются на экзаменах. Поэтому сейчас Слинько В. предлагает просмотреть презентацию о нахождении коэффициентов в квадратных уравнениях. <Приложение 3>

А после просмотра презентации учащимся предлагается решить 2 уравнения самостоятельно с последующей проверкой.

1. Разность корней квадратного уравнения равна 2. Найдите с.

2. Разность корней квадратного уравнения равна 6. Найдите с.

Источник



Теорема Виета

Приведенным квадратным уравнением называется уравнение вида:

Для корней $x_1$ и $x_2$ приведенного квадратного уравнения (при $D \ge 0$) справедливо следующее:

$$ x_1+x_2 = -b, \quad x_1 x_2 = c $$

$$ x_1 = -6, x_2 = 1, \quad x_1+x_2 = -5, \quad x_1 x_2 = -6 $$

Теорема Виета

Для корней $x_1$ и $x_2$ квадратного уравнения $ax^2+bx+c = 0$ (при $D \ge 0$) справедливо следующее:

$$ ax^2+bx+c = a(x-x_1 )(x-x_2 ) $$

$$ 2x^2+5x-3 = 2 \left(x-\frac<1> <2>\right)(x+3) $$

$$ x_1 = \frac<1><2>, x_2=-3, \quad x_1+x_2=-\frac<5><2>, \quad x_1 x_2 = — \frac<3> <2>$$

Примеры

Пример 1. Составьте квадратное уравнение по его корням:

Искомое уравнение: $x^2-3x-10 = 0$

Искомое уравнение: $x^2-3,5x-2 = 0$

$$ \left(x-\frac<1> <3>\right) \left(x-\frac<1> <2>\right) = x^2- \left(\frac<1><3>+\frac<1> <2>\right)x+\frac<1> <3>\cdot \frac<1> <2>= x^2-\frac<5> <6>x+\frac<1> <6>$$

Искомое уравнение: $x^2-\frac<5> <6>x+\frac<1> <6>= 0 или 6x^2-5x+1 = 0$

$г) \frac<3><5>$ — один корень

$$ \left(x-\frac<3> <5>\right)^2 = x^2-2 \cdot \frac<3> <5>x+ \left(\frac<3> <5>\right)^2 = x^2-\frac<6> <5>x+\frac<9><25>$$

Искомое уравнение: $x^2-\frac<6> <5>x+ \frac<9> <25>= 0$ или $25x^2-30x+9 = 0$

Пример 2. Один из корней уравнения $x^2+bx-21 = 0$ равен 3. Найдите другой корень и коэффициент b.

По теореме Виета можем записать:

Получаем: второй корень равен -7, уравнение имеет вид $x^2+4x-21 = 0$.

Ответ: $x_2$ = -7, b = 4

Пример 3. Один из корней уравнения $x^2+3x+c = 0$ равен 12. Найдите другой корень и коэффициент c.

По теореме Виета можем записать:

$$ <\left\< \begin x_2+12 = -3 \\ 12x_2 = c \end \right.> \Rightarrow <\left\< \begin x_2 = -15 \\ c = 12 \cdot (-15) = -180 \end \right.> $$

Источник